Что он делает и чем занимается

Почему в депутаты идут артисты и спортсмены, а не те, кто надо?

Что такое прожиточный минимум на ребенка и какой его размер

Балаковская АЭС: строительство и развитие Руководство балаковской аэс

Деньги под автомобиль с правом пользования

Что такое план аудита. Принципы планирования. Планирование аудиторской проверки

Воинские звания США: в чем их особенности?

Нулевая отметка Как согласовать помещения по уровню

Как оплатить административный штраф через сбербанк онлайн Заплатить штрафы гибдд онлайн сбербанк

Пример хеджирования. Валютное хеджирование. Что такое хеджирование простыми словами? Хеджирование активов

Заполнение декларации по налогу на прибыль

Доходы будущих периодов актив или пассив

Ремонт основных средств: как отразить в бухгалтерском учете Расходы на ремонт ос

Сергей доля про обработку фотографий

«мегапир», представительство ассоциации в южном федеральном и южном военном округах Ассоциацию офицеров запаса вооруженных сил мегапир

Чем отличаются бинарные числа от двоичной системы. Системы исчисления

С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку "Перевести". Теоретическую часть и численные примеры смотрите ниже.

Результат уже получен!

Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Двоичная система счисления

Двоичная система счисления - это позиционная система счисления с основанием 2. В этой системе счисления числа записываются с помощью двух символов (1 и 0). Компьютер может различить только нулевое и единичное состояние бита, и работает компьютер в системе исчисления с основанием 2 или в двоичной системе.

Бит получил свое название от английского Binary digit (двоичная цифра).

Сочетанием двоичных цифр (битов) можно представить любое значение. Значение двоичного числа определяется относительной позицией каждого бита и наличием единичных битов. Ниже показано восьмибитовое число, содержащее все единичные биты:

Значения: 128 64 32 16 8 4 2 1 биты: 1 1 1 1 1 1 1 1

Самая правая цифра имеет весовое значение 1, следующая цифра влево - 2, следующая - 4 и т.д. Общая сумма для восьми единичных битов в данном случае составит 255:

(1+2+4+8+16+32+64+128=255)

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два.

    Первый вариант: Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 17 в двоичное. Согласно таблице степеней оснований (см. выше) 17=16+1. Значит на место значимых цифр 16 и 1 ставим 1 - остальные нули. Получаем 17=10001

512 256 128 64 32 16 8 4 2 1 0 0 0 0 0 1 0 0 0 1

    Второй вариант: Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 с остатком 0 2 /2 = 1 с остатком 0 1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в начало двоичной записи. Продолжаем делить на 2 частные от деления до тех пор, пока частное не станет равным 0. В результате получаем число 19 в двоичной записи: 10011.

    Первый вариант: Преобразование двоичных чисел в десятичные

В обратную сторону нужно десятичные сложить, основываясь на таблице степеней основания 2.

Арифметические действия в двоичном формате

Компьютер выполняет арифметические действия только в двоичном формате. Поэтому, необходимо знать правила сложения в двоичной системе исчисления. Напомним их:

0 + 0 = 0 1 + 0 = 1 1 + 1 = 10

Давайте рассмотрим использование этих правил на конкретном примере.

    Пример: сложить числа 65 и 42, представленные в двоичной системе исчисления.

В десятичной системе исчисления все осуществляется достаточно просто: 65+42=107. Для сложения этих чисел в двоичной системе исчисления нужно сначала перевести их в эту систему, например, как показано на рисунке: Таким образом, получаем: 65 в 10-ой системе = 01000001 в 2-ой системе. Обратите внимание на то, что ведущий ноль в двоичном представлении числа добавлен для дополнения двоичного представления до восьми бит. Аналогично: 42 в 10 = 00101010 в 2. Выполним сложение этих чисел:

01000001 + 00101010 -------- 01101011

Можете перепроверить и убедиться, что 01101011 в 2=107 в 10:

0*27+1*26+1*25+0*24+1*23+0*22+1*21+1*20 = 64+32+8+2+1 = 107

    Вычитание

Для выполнения операции вычитания последнее заменяется сложением, а в качестве второго слагаемого берется противоположное число. Например, пусть надо выполнить вычитание: 65 - 42. Заменим его сложением: 65 + (-42).

Двоичные числа имеют положительные значения, что обозначается нулевым значением самого левого, старшего разряда. Отрицательные двоичные числа содержат единичный бит в старшем разряде.

Преобразование десятичных чисел в 16- систему

27 /16 = 1 с остатком 11 11 /16 = 0 c остатком 1

И того получим 1B .

Остаток от деления на 16 всегда меньше 16. Это относится ко всем системам счисления.

Рассмотрим несколько простых примеров шестнадцатеричной арифметики. Следует помнить, что после шестнадцатеричного числа F следует шестнадцатеричное 10, что равно десятичному числу 16:

6+4=A 5+8=D F+1=10 F+F=1E 10+10=20 FF+1=100

Энциклопедичный YouTube

    1 / 5

    ✪ Зачем нужны системы счисления: двоичная и другие

    ✪ Как запоминает и считает компьютер. Системы счисления и кодирования данных

    ✪ Системы счисления: Сложение, вычитание и умножение двоичных чисел. Центр онлайн-обучения «Фоксфорд»

    ✪ Основы систем счисления

    ✪ Системы счисления. Двоичная система счисления - 9 класс

    Субтитры

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

1024 512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, т.к. требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19 /2 = 9 с остатком 1
9 /2 = 4 c остатком 1
4 /2 = 2 без остатка 0
2 /2 = 1 без остатка 0
1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т.д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора , что не будет способствовать помехоустойчивости и надёжности хранения информации. [ ]
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения - основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра , то есть двоичный триггер с двумя состояниями (0,1).

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были

В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)

Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.

В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.

Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.

Попробуем считать в двоичной системе:
0 – это ноль
1 – это один (и это предел разряда)
10 – это два
11 – это три (и это снова предел)
100 – это четыре
101 – пять
110 – шесть
111 – семь и т.д.

Перевод чисел из двоичной системы счисления в десятичную

Не трудно заметить, что в двоичной системе счисления длины чисел с увеличением значения растут быстрыми темпами. Как определить, что значит вот это: 10001001? Непривычный к такой форме записи чисел человеческий мозг обычно не может понять сколько это. Неплохо бы уметь переводить двоичные числа в десятичные.

В десятичной системе счисления любое число можно представить в форме суммы единиц, десяток, сотен и т.д. Например:

1476 = 1000 + 400 + 70 + 6

1476 = 1 * 10 3 + 4 * 10 2 + 7 * 10 1 + 6 * 10 0

Посмотрите на эту запись внимательно. Здесь цифры 1, 4, 7 и 6 - это набор цифр из которых состоит число 1476. Все эти цифры поочередно умножаются на десять возведенную в ту или иную степень. Десять – это основание десятичной системы счисления. Степень, в которую возводится десятка – это разряд цифры за минусом единицы.

Аналогично можно разложить и любое двоичное число. Только основание здесь будет 2:

10001001 = 1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0

1*2 7 + 0*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137

Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:

10001001 2 = 137 10

Почему двоичная система счисления так распространена?

Дело в том, что двоичная система счисления – это язык вычислительной техники. Каждая цифра должна быть как-то представлена на физическом носителе. Если это десятичная система, то придется создать такое устройство, которое может быть в десяти состояниях. Это сложно. Проще изготовить физический элемент, который может быть лишь в двух состояниях (например, есть ток или нет тока). Это одна из основных причин, почему двоичной системе счисления уделяется столько внимания.

Перевод десятичного числа в двоичное

Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:

77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
9 / 2 = 4 (1 остаток)
4 / 2 = 2 (0 остаток)
2 / 2 = 1 (0 остаток)
1 / 2 = 0 (1 остаток)

Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:

1001101 = 1*2 6 + 0*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 = 64 + 0 + 0 + 8 + 4 + 0 + 1 = 77

План урока

Здесь вы узнаете:

♦ как работает с числами;
♦ что такое электронная таблица;
♦ как решаются вычислительные задачи;
♦ с помощью электронных таблиц;
♦ как можно использовать электронные таблицы для информационного моделирования.

Двоичная система счисления

Основные темы параграфа:

♦ десятичная и двоичная системы счисления;
♦ развернутая форма записи числа;
♦ перевод двоичных чисел в десятичную систему;
♦ перевод десятичных чисел в двоичную систему;
♦ арифметика двоичных чисел.

В данной главе речь пойдет об организации вычислений на компьютере . Вычисления связаны с хранением и обработкой чисел.

Компьютер работает с числами в двоичной системе счисления.

Эта идея принадлежит Джону фон Нейману, сформулировавшему в 1946 году принципы устройства и работы ЭВМ. Выясним, что такое система счисления.

Десятичная и двоичная системы счисления

Системой счисления или в сокращенном варианте СС называют такую систему записи чисел, которая имеет определенный набор цифр.

Об истории различных систем счисления вы узнали, когда изучали 7 главу учебника. А сегодня мы с вами обратим наше внимание на такие системы счисления, как двоичная и десятичная СС.

Как вам уже известно из изученного ранее материала, что одной из наиболее часто применяемых систем счисления является десятичная СС. А называется эта система так потому, что в основе этого словообразования есть число 10. Вот поэтому и система счисления называется десятичной.

Вы уже знаете, что в этой системе используют такие десять цифр, как 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. А вот числу десять отведена исключительная роль, так как на наших руках насчитывается десять пальцев. То есть, десять цифр являются основанием данной системы счисления.

А вот в двоичной системе счисления, задействованные только две цифры, такие, как 0 и 1 и основанием этой системы является число 2.

Теперь давайте попробуем разобраться, как с помощью всего лишь двух цифр представить какую-то величину.

Развернутая форма записи числа

Давайте обратимся к своей памяти и вспомним, какой в десятичной СС существует принцип записи чисел. То есть, для вас уже не будет секретом, что в такой СС запись числа зависит от места расположения цифры, то есть, от ее позиции.

Так, например, цифра, которая является крайней справа, говорит нам о количестве единиц этого числа, следующая за этой цифрой, как правило, указывает на количество двоек и т.д.

Если мы с вами, например, возьмем такое число, как 333, то увидим, что крайняя правая цифра обозначает три единицы, потом три десятка и за ней – три сотни.

Теперь это изобразим в виде такого равенства:

Здесь мы видим равенство, в котором выражение, расположенное с правой стороны от знака равно, предоставлено в виде развернутой формы записи этого многозначного числа.

Рассмотрим еще один пример многозначного десятичного числа, который также представлен в развернутой форме:

Перевод двоичных чисел в десятичную систему

Теперь давайте для примера возьмем такое многозначительное двоичное число, как:

В этом многозначительном числе мы видим с правой стороны внизу двойку, которая нам указывает на основание системы счисления. То есть, нам понятно, что перед нами двоичное число и перепутать его с десятичным, мы уже не можем.

И значение каждой следующей цифры в двоичном числе возрастает в 2 раза при каждом шаге справа налево. Теперь давайте посмотрим, как будет выглядеть развернутая форма записи этого двоичного числа:

На этом примере мы видим, как можно перевести перевели двоичное число в десятичную систему.

Теперь давайте еще приведем несколько примеров перевода двоичных чисел в десятичную систему счисления:

Это пример нам показывает то, что двузначному десятичному числу, в данном случае, соответствует шестизначное двоичное. Для двоичной системы характерно такое возрастание количества цифр при увеличении значения числа.

А теперь давайте посмотрим, как будет выглядеть начало натурального ряда чисел в десятичной (А10) и двоичной (А2) СС:



Перевод десятичных чисел в двоичную систему

Рассмотрев приведенные примеры выше, надеюсь вам теперь понятно, как происходит перевод двоичного числа в равное десятичное число. Ну, а теперь давайте попробуем сделать обратный перевод. Смотрим, что нам для этого необходимо сделать. Нам для такого перевода необходимо попробовать разложить десятичное число на слагаемые, которые представляют собой степени двойки. Приведем такой пример:

Как видим, это сделать не так уж и просто. Давайте попробуем рассмотреть другой, более простой метод перевода из десятичной СС в двоичную. Такой метод состоит в том, что известное десятичное число, как правило, делиться на два, а его полученный остаток и будет выступать младшим разрядом искомого числа. Это, вновь полученное число мы снова делим на два и получаем следующий разряд искомого числа. Такой процесс деления мы будем продолжать до тех пор, пока частное не станет меньше основания двоичной системы, то есть, меньше двойки. Вот такое полученное частное и будет старшей цифрой числа, которое мы искали.

Давайте теперь рассмотрим методы записи деления на число два. Для примера возьмем число 37 и попробуем его перевести в двоичную систему.



На данных примерах мы видим, что а5, а4, а3, а2, а1, а0 являются обозначением цифр в записи двоичного числа, которые осуществляются по порядку слева направо. В итоге мы с вами получим:


Арифметика двоичных чисел

Если исходить из правил в арифметике, то легко заметить, что в двоичной системе счислений, они намного проще, чем в десятичной.

Теперь давайте вспомним варианты сложения и умножения однозначных двоичных чисел.


Благодаря такой простоте, которая легко согласовывается с битовой структурой компьютерной памяти, двоичная система счисления привлекла внимание создателей компьютера.

Обратите внимание на то, как выполняется пример сложения двух многозначных двоичных чисел при помощи столбика:


А вот перед вами пример умножения многозначных двоичных чисел в столбик:


Вы заметили, как легко и просто выполнять такие примеры.

Коротко о главном

Система счисления - определенные правила записи чисел и связанные с этими правилами способы выполнения вычислений.

Основание системы счисления равно количеству используемых в ней цифр.

Двоичные числа - числа в двоичной системе счисления. В их записи используются две цифры: 0 и 1.

Развернутая форма записи двоичного числа - это его представление в виде суммы степеней двойки, умноженных на 0 или на 1.

Использование двоичных чисел в компьютере связано с битовой структурой компьютерной памяти и простотой двоичной арифметики.

Достоинства двоичной системы счисления

А теперь давайте рассмотрим, какими достоинствами обладает двоичная система исчисления:

Во-первых, достоинством двоичной системы счисления является то, что с ее помощью довольно таки просто осуществлять процессы хранения, передачи и обработки информации на компьютере.
Во-вторых, для ее выполнения достаточно не десять элементов, а лишь два;
В-третьих, отображение информации с помощью лишь двух состояний, это надежнее и более устойчиво к различным помехам;
В-четвертых, есть возможность использования алгебры логики для осуществления логических преобразований;
В-пятых, двоичная арифметика все же проще десятичной, поэтому является более удобной.

Недостатки двоичной системы счисления

Двоичная система счисления менее удобна, так как человек привык больше пользоваться десятичной системой, которая намного короче. А вот, в двоичной системе большие числа имеет довольно таки большое число разрядов, что и является ее существенным недостатком.

Почему двоичная система счисления так распространена?

Популярной двоичная система счисления является потому, что это язык вычислительной техники, где каждая цифра должна быть каким-то образом представлена на физическом носителе.

Ведь проще иметь два состояния при изготовлении физического элемента, чем придумывать устройство, в котором должно присутствовать десять различных состояний. Согласитесь, что это было бы намного сложней.

По сути, это и есть одной из основных причин популярности двоичной системы счисления.

История возникновения двоичной системы счисления

История создания двоичной системы счисления в арифметике, довольно таки яркая и стремительная. Основателем этой системы считают известного немецкого ученого и математика Г. В. Лейбница. Им была опубликована статья, в которой он описал правила, по которым можно было выполнить всевозможные арифметические операции над двоичными числами.

К сожалению, до начала двадцатого века двоичная система счисления была малозаметна в прикладной математике. А после того, как начали появляться простые счетные механические приборы, то ученые стали более активно обращать внимание на двоичную систему счисления и начали ее активно изучать, так как для вычислительных устройств она была удобна и незаменима. Она является той минимальной системой, с помощью которой можно полностью реализовать принцип позиционности в цифровой форме записи чисел.

Вопросы и задания

1. Назовите преимущества и недостатки двоичной системы счисления по сравнению с десятичной.
2. Какие двоичные числа соответствуют следующим десятичным числам:
128; 256; 512; 1024?
3. Чему в десятичной системе равны следующие двоичные числа:
1000001; 10000001; 100000001; 1000000001?
4. Переведите в десятичную систему следующие двоичные числа:
101; 11101; 101010; 100011; 10110111011.
5. Переведите в двоичную систему счисления следующие десятичные числа:
2; 7; 17; 68; 315; 765; 2047.
6. Выполните сложение в двоичной системе счисления:
11 + 1; 111 + 1; 1111 + 1; 11111 + 1.
7. Выполните умножение в двоичной системе счисления:
111 · 10; 111 · 11; 1101 · 101; 1101 · 1000.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов

Вам также будет интересно:

Расписание занятий – Timetable
Программа для составления расписания "1С:Автоматизированное составление расписания....
Рспп: родственные связи правительства рф Где работает сердюков в настоящее время
Бывший министр обороны Анатолий Сердюков получил новую должность. Он стал индустриальным...
Как взыскать неосновательное обогащение за пользование земельным участком без договора аренды
Неосновательное обогащение за пользование земельным участком взыскивается в денежной форме....
Законодательная база российской федерации Федеральный закон 402 фз о бухгалтерском
Глава 1. Общие положения Статья 1. Цели и предмет настоящего Федерального закона 1....
Пятерочка: учебный портал Study X5
Через мозилу или другой браузер для прохождения профессиональных курсов в дистанционном...